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Tangent map for classical billiards in magnetic fields 
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Abstract. A charged particle is moving inside a planar billiard embedded in a uniform 
constant magnetic field which is directed perpendicular to the plane. The stability of 
classical trajectories is studied by the area-preserving tangent map which is derived for 
any billiard shape having a smooth convex boundary. As an example, two generic billiards 
are considered here, namely the ellipse and the stadium, classical trajectories of which are 
well known to be regular or chaotic, respectively, for an uncharged particle. Lyapunov 
exponents and PoincarC sections are studied as a function of the field strength and of the 
billiard deformation. Regular motion is restored by increasing the magnetic field and/or 
the deformation. 

1. Introduction 

There are only a few cases in which dynamical systems can be reduced to mappings 
which remain useful in characterizing chaotic or regular motions. Moreover, the 
classification of fixed points and the studies of the stability of classical trajectories are 
easily understood by the properties of a linearized version of the mapping, often 
referred to as the tangent map. In this work, we will show how to derive analytically 
the tangent map for a charged particle moving in a planar billiard which is embedded 
in a uniform perpendicular magnetic field. Of course, the mapping itself, which gives 
the location on the boundary of the successive bounces of the particle and the 
orientation of its velocity, is only determined numerically. The tangent map, we found, 
generalizes a previous result obtained by Berry (1981) for a particle bouncing in a 
billiard without any magnetic field. 

Classical magnetic billiards were first studied through the geometry of classical 
orbits by Robnik and Berry (1985). These simple systems are interesting from a quantum 
point of view because the magnetic field breaks the time reversal symmetry and yields 
new properties of the level spacings (Berry and Robnik 1986, Robnik and Berry 1986). 
Billiards in magnetic fields are also studied in connection with more general phenomena 
in condensed matter physics, such as the diamagnetic susceptibility, when the Larmor 
radius is close to the dimensions of the billiard (Nakamura and Thomas 1988). 

In this work, we will derive the tangent map for a charged particle inside a smooth 
convex billiard in a constant perpendicular magnetic field. The tangent map will be 
used to calculate the Lyapunov exponent of any classical trajectories in connection 
with Poincare sections for two particular billiard shapes: the ellipse and the stadium, 
Without any magnetic field, the former is an integrable system, the latter is an ergodic 
system. Therefore, it would be interesting to see how the chaotic motion could be 
enhanced by the magnetic field, on one hand, or how the order could be restored by 
increasing either the deformation or the field strength. 
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2. Derivation of the tangent map 

We consider a unit mass particle with an electric charge q, moving with the velocity 
U inside a planar billiard. If this billiard is embedded in a constant magnetic field of 
strength B perpendicular to the plane of the billiard, the classical trajectories of the 
particle are made of arcs of a circle, the radius of which is the Larmor radius given by 

where w, the angular velocity of the motion, is parallel to the z axis which is 
perpendicular to the billiard plane. The geometry of the mapping is shown in figure 
1, where the particle starts in MO on the billiard boundary, with a velocity U,. The 
tangent to to the boundary (anticlockwise orientated) at MO is used to define the angles 

(G, t o )  = *o ( t o ,  uo) = 010 (2) 

- .  where Ox IS any direction in the plane of the billiard. The corresponding angles 
and m, are defined in M I  which is the next bounce on the boundary for the trajectory 
starting in MO. We choose two particular directions in the plane of the billiard, U is 
a unit vector parallel to MOMl,  and r is perpendicular to y the reference frame (y r, k )  
being a direct trihedral. Between MO and M I ,  the velocity U turns around C by an 
angle 2'p, defined by 

- 

(U, U 3  = 'p. (3) 

The tangent map is obtained by considering the following invariant between two 
successive bounces: 

- 
U,- o n m 0  = u1 -a A O M , .  (4) 

As the velocity modulus is conserved along the trajectory, the variation of the preceding 

C 

Figure 1. Geometry and definitions of the 
convex billiard in a magnetic field. Onetrajec- 
tory is shown here. starting in MO on the 
boundary with a unit velocity U,,. 
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Flgure 2. Poincare sections for an elliptic billiard of deformation p = 1.25 in magnetic field 
(the deformation p is the semi-axis ratio of the elliptic boundary). q is the projection of 
the velocity on the tangent of the boundary when the particle hits it, I is the curvilinear 
abscissa on the ellipse, Lis the perimeter of the ellipse and R is the Larmor radius. 

equation gives 

(dao+d*o)k A uo-dso w to=  (dol +d@Jk A 0 1  -ds, w A tl . (5 )  

By projecting equation (5) on the directions U and r, we obtain 

1 sin(ao-q) -1 s i n ( a , + q )  -- 
(6 )  

[ P(?)+ Rsinrp 11 [id%]=[ -- P(A) R s i n q  

~($00) RCOSP P(*J  Rcos(D 
cos(a0 - 'P) 1 +cos(a,+(o) 

where we introduced the radii of curvature in MO and MI, ~ ( I / J ~ )  and p(&) respectively, 
defined by 

ds 
p ( * )  =z. (7) 
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Figure 3. Regular classical trajectories in the x - y  plane of the elliptic billiard and their 
corresponding Lyapunov functions A, v e m s  the number n of successive bounces, for a 
deformation U = 1.25 and a Lamor radius R = 1 .  

A straightforward calculation shows that the two matrices appearing in equation 
( 6 )  have the same determinant if we change the variable a to q =cos a, as done by 
Berry (1981). By inverting one of the matrices, we finally obtain: 

[:;:I = 

sin(ao-2y) - R sin2y 

sin(ao-2p,) R sin 2y  sin(a, + 247) sin(a, + 2 y  - eo) 

sin a, p(tho) sin a, 

- - 
P ( h )  P($o)P( lL , )  P ( & )  R 

[dsO]. (8) 1 R sin 2p  
sin nosin a l  

+ R sin2y sin(a,+Zy) dq, 
p ( # , )  sin a. sin a. 

The determinant of the matrix (T) given by equation (8) is then unity and thus the 
mapping is area preserving. If we want to connect the deviations (ds,, dq,) when the 
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Figure 4. Same as figure 3 but for two chaotic trajectories. 

perfect re0ection in MI is done, i.e. after returning the velocity U, with respect to 
the tangent f l  (see figure l) ,  we have to change a I  in -0, in the matrix defined by 
equation (8). 

Of course, when the magnetic field is vanishing, the deviation matrix given by 
equation (8) has the limit already found by Berry (1981), for the motion of a free 
particle inside a convex billiard. Indeed, when the field strength B is vanishing, then 
the Larmor radius R goes to infinity and the angle rp is going to 180" but 

lim R sin 2rp =pol  = MOM,. (9)  
6-0  

Another interesting limit is that of a circular billiard in magnetic field. The classical 
motion is then integrable. Beside the energy conservation, a second constant of motion 
can be found; in this case, we noticed that the angles E. for the nth bounce have the 
following property: 

a. =constant for a circular billiard. (10) 
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Figure 5. Poimar6 sections for an elliptic billiard in a magnetic field for different values 
of the deformation I( and for a Larmor radius R = 1. 

For a billiard of any smooth convex shape, the tangent map allows us to calculate the 
Lyapunov exponent associated to each classical trajectory. If  we consider a reference 
trajectory starting in MO with the variables (so, qo) and a second trajectory starting 
from MA with variables (so+Sso, qo+ Sq,) where Sso and Sq, are inlinitely small, then 
after N bounces of the particle on the boundary the deviations asN and SqN will be 

where the matrix (T) i , i - ,  is connecting two successive deviations corresponding to the 
(i- 1)th and ith bounces on the boundary. The matrix elements of the matrix (T)i . i - ,  
are given by equation ( 8 )  and depend on the curvilinear coordinates s of the successive 
bounces on the boundary, the orientations of the velocity with respect to the tangent 
on the boundary and the curvature radii at the bounce. As each matrix in equation 
(11) has a unit determinant, if the trace of the product matrix is greater or less than 
2, the corresponding trajectory is chaotic or regular, respectively (see Berry 1981). 
Indeed, the Lyapunov exponents are just the inlinite time-limit of the logarithm of the 
eigenvalues of the product matrix and therefore have opposite values as the mapping 
is area perserving. 
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Figure 5. (continued). 

In the following, two specific cases will be considered, the elliptic billiard and the 
stadium. Without any magnetic field the former is an integrable system, the latter an 
ergodic one. Introducing a magnetic field will break these general properties and will 
be studied as a function of the field strength and the billiard deformation. 

3. Ellipse and stadium io a magnetic field 

In this section, we present the Lyapunov exponent calculations using the tangent map 
and the PoincarC sections for two billiards in a magnetic field: the ellipse and the 
stadium. For the elliptic billiard, we define the deformation by p = a /  b, where a and 
b are respectively the semi-major and semi-minor axis of the ellipse. For the stadium, 
the shape parameter y is defined by the &io of the straight segment to the diameter 
of the half-circles. 

Figure 2 shows Poincark sections for an ellipse with deformation p = 1.25 and for 
various magnetic field strengths B. For a vanishing magnetic field, the classical motion 
is integrable and only two topologies are present in the phase space: one is made by 
the classical trajectories which never cross the segment between the two foci, the second 
by the trajectories which cross the foci segment. Therefore, a separatrix exists in this 
case, and, as expected, when the field strength B is small but non-vanishing, the chaotic 
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Figure 6. PoincarC sections for a stadium in a magnetic field. The shape parameter of the 
stadium is y = 1 in all the cases, R is the Lamor radius. 

motion is Erst developing, on a macroscopic scale, around the separatrix (see for 
example figure 2 for R = 3). When B is increasing, the chaotic trajectories correspond 
mainly to an orientation of the velocity, versus the tangent on the boundary, close to 
T. As the magnetic field strength B is increasing, the chaotic region is shrinking at an 
increasing rate and totally disappears for the largest value of B, restoring a regular 
motion everywhere in the phase space. Figure 3 shows two different classical trajectories 
corresponding to a regular motion. The corresponding evolution of the Lyapunov 
function versus the number of bounces n is shown on the right-hand part of figure 3. 
Lyapunov functions are evaluated by using the tangent map given by equation (8). 
The general behaviour of the Lyapunov functions for these regular trajectories is very 
similar to that already observed for the regular trajectory of a hydrogen atom in a 
magnetic field (Schweizer er a1 1988). Figure 4 shows two classical trajectories and 
their Lyapunov exponents when the initial conditions are taken in the chaotic region, 
for a magnetic field strength B corresponding to a Larmor radius R = 1 and an ellipse 
deformation p = 1.25. Now, the Lyapunov functions reach asymptotically a constant 
value, different from zero, even if it is somewhat difficult to precisely determine this 
value. In figure 5, different Poincar6 sections are shown for the elliptic billiard in a 
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Figure 7. Regular (top) and chaotic (bottom) trajectories in a stadium with a shape 
parameter y = 1 and a Lannor radius R = 1. Each trajectory is drawn for the first 100 
bounces an the boundary. The corresponding Lyapunov function A is platted versus the 
number n of successive bounces of lhe particle. 

magnetic field, corresponding to diilerent values of the deformation p and a constant 
field strength. The area of the ellipse is kept constant when the deformation is varying. 
In a circular billiard, shown in figure 5 for p =  1, any condition corresponds to a 
regular trajectory, as already underlined by equation (10). When the deformation is 
small-p = 1.05 in figure 5-the chaotic motion appears for an angle a, between the 
velocity and the tangent to the boundary, close to ?r. When the deformation increases 
for a constant magnetic field, the chaotic region is expanding except for trajectories 
close to the periodic orbit around the semiminor axis and for an angle a close to 
zero. For /.t = 2, the chaotic region is well developed even if a careful analysis of the 
Poincart section shows a fixed point for ( s / L ,  q)=(f ,  -+) (see the enlarging part 
surrounding this point on figure 5 ) .  For a larger deformation, order is restored and 
the chaotic region is smoothly shrinking but great values of p ( p  > 6) are needed to 
reach a complete order. Therefore in order to summarize, increasing the field strength 
for a fixed deformation of the elliptic billiard favours the appearance of chaotic motion 
which reaches a maximum before disappearing at large values of the magnetic field. 
The same conclusion is obtained by keeping a constant magnetic field and by increasing 
the deformation of the ellipse. 
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It is interesting to see what the changes are if we take an opposite starting point 
for the billiard shape. Instead of an integrable system, as the ellipse, let us start with 
an ergodic system, the stadium. The deformation y is defined by the ratio of the straight 
section length and the circle diameter of the stadium. Figure 6 shows four Poincare 
sections, corresponding to a stadium having a shape parameter y = 1, for different 
magnetic field strengths B. For the smallest values of B, the Poincari sections are filled 
by chaotic trajectories except for small regions which correspond to periodic trajectories 
bouncing between the two straight lines of the billiard. For the largest values of B, 
order is restored and the shape of the billiard has almost no influence on the general 
form of the Poincari sections as can be seen, for the ellipse and the stadium, by 
comparing R = 0.2 in figure 2 and R = 0.02 in figure 6, respectively. Figure 7 shows 
the evolution of the Lyapunov exponent for a regular and a chaotic trajectory, in a 
stadium embedded in a constant magnetic field, as a function of the number of bounces 
of the particle on the boundary. The Lyapunov evolutions are similar to the correspond- 
ing quantities in an elliptic billiard, see for example figures 3 and 7 for regular 
trajectories, and figures 4 and 7 for chaotic trajectories. In this latter case, the asymptotic 
value reached by the Lyapunov exponent is greater for the stadium than for the ellipse. 
Extensive use of the tangent map given by equation (8), allows us to compute very 
easily the Lyapunov exponent without considering two trajectories which are initially 
nearby as proposed by Benettin ef a/ (1976). 

4. Summary and conclusion 

In this work, we derived the analytical expression of the tangent map corresponding 
to the classical motion of a charged particle in a planar billiard embedded in a constant 
uniform magnetic field perpendicular to the plane. The billiard must have 'a smooth 
convex boundary. The tangent map is a 2 x 2 matrix, the elements of which are functions 
of the magnetic field, the successive curvilinear coordinates, the scalar products of the 
velocity with the tangent on the boundary and the curvature radii at each bounce. For 
a vanishing value of the magnetic field, this tangent map has the limit already found 
by Berry (1981). The properties of this mapping are extensively used in the calculation 
of the Lyapunov exponents for two billiard shapes: the ellipse and the stadium. The 
former is an integrable system for a vanishing magnetic field while the latter is an 
ergodic system. Finally, it is shown that increasing either the field strength or the 
deformation of the billiard, keeping the area of the billiard constant, is followed by 
the appearance of large chaotic regions in the phase space which are disappearing 
when great values of these two parameters are reached. 
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